Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Bacillus subtilis endospore: assembly and functions of the multilayered coat

Key Points

  • The Bacillus subtilis spore coat is a multilayered protective structure composed of more than 70 different proteins.

  • In addition to its protective role, the spore coat influences the process of spore germination and defines the type of interactions that spores can establish with various surfaces in the environment.

  • Fluorescence microscopy in combination with high-resolution image analysis has produced a spatially scaled coat protein interaction network indicating that the coat is organized into four distinct layers. These studies led to the discovery of the outermost layer of the coat in B. subtilis, referred to as the spore crust.

  • Time course analyses of spore coat assembly have revealed that two main steps can be distinguished in coat morphogenesis: the initial recruitment of proteins to the spore surface as a scaffold cap, followed by spore encasement in a series of successive waves.

  • Coat assembly is regulated at the transcriptional level by the sequential expression of individual coat genes and at the protein level by a small group of coat morphogenetic proteins that coordinate both the recruitment of coat proteins to specific coat layers and spore encasement.

Abstract

Sporulation in Bacillus subtilis involves an asymmetric cell division followed by differentiation into two cell types, the endospore and the mother cell. The endospore coat is a multilayered shell that protects the bacterial genome during stress conditions and is composed of dozens of proteins. Recently, fluorescence microscopy coupled with high-resolution image analysis has been applied to the dynamic process of coat assembly and has shown that the coat is organized into at least four distinct layers. In this Review, we provide a brief summary of B. subtilis sporulation, describe the function of the spore surface layers and discuss the recent progress that has improved our understanding of the structure of the endospore coat and the mechanisms of coat assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

39,95 €

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sporulation and germination cycle in Bacillus subtilis.
Figure 2: Spore ultrastructure.
Figure 3: The coat genetic interaction network.
Figure 4: A model for coat morphogenesis: successive waves of spore encasement.

Similar content being viewed by others

References

  1. Brun, Y. & Shimkets, L. J. Prokaryotic Development (ASM Press, 2000).

    Google Scholar 

  2. Cohn, F. Untersuchungen über Bacterien. IV. Beiträge zur Biologie der Bacillen. Beiträge Biol. Pflanzen 7, 249–276 (1877). Along with Koch (below), this paper contains the first (and highly prescient) description of sporulation.

    Google Scholar 

  3. Koch, R. Untersuchungen über Bacterien V: Die Aetiologie der Milzbrand-Krankheit, begründet auf die Entwicklungsgeschichte der Bacillus anthracis. Beiträge Biol. Pflanzen 7, 277–308 (1877).

    Google Scholar 

  4. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. & Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64, 548–572 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kennedy, M. J., Reader, S. L. & Swierczynski, L. M. Preservation records of micro-organisms: evidence of the tenacity of life. Microbiology 140, 2513–2529 (1994).

    PubMed  Google Scholar 

  6. Sneath, P. H. Longevity of micro-organisms. Nature 195, 643–646 (1962).

    CAS  PubMed  Google Scholar 

  7. Jacotot, H. & Virat, B. La longévité des spores de B. anthracis (premier vaccin de Pasteur). Ann. Inst. Pasteur 87, 215–217 (1954).

    CAS  Google Scholar 

  8. de Hoon, M. J., Eichenberger, P. & Vitkup, D. Hierarchical evolution of the bacterial sporulation network. Curr. Biol. 20, R735–R745 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Galperin, M. Y. et al. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ. Microbiol. 14, 2870–2890 (2012). A comprehensive study of sporulation gene conservation among endospore formers.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Earl, A. M., Losick, R. & Kolter, R. Ecology and genomics of Bacillus subtilis. Trends Microbiol. 16, 269–275 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, M. et al. Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet. 1, e65 (2005).

    PubMed  PubMed Central  Google Scholar 

  12. Hubert, C. et al. A constant flux of diverse thermophilic bacteria into the cold Arctic seabed. Science 325, 1541–1544 (2009).

    CAS  PubMed  Google Scholar 

  13. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    PubMed  PubMed Central  Google Scholar 

  14. Fujita, M. & Losick, R. Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev. 19, 2236–2244 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Molle, V. et al. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50, 1683–1701 (2003).

    CAS  PubMed  Google Scholar 

  16. Popham, D. L. Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell. Mol. Life Sci. 59, 426–433 (2002).

    CAS  PubMed  Google Scholar 

  17. Henriques, A. O. & Moran, C. P. Jr. Structure, assembly, and function of the spore surface layers. Ann. Rev. Microbiol. 61, 555–588 (2007). A thorough review that includes a comprehensive list of coat proteins in B. subtilis and B. anthracis.

    CAS  Google Scholar 

  18. Driks, A. The Bacillus anthracis spore. Mol. Aspects Med. 30, 368–373 (2009).

    CAS  PubMed  Google Scholar 

  19. Vasudevan, P., Weaver, A., Reichert, E. D., Linnstaedt, S. D. & Popham, D. L. Spore cortex formation in Bacillus subtilis is regulated by accumulation of peptidoglycan precursors under the control of sigma K. Mol. Microbiol. 65, 1582–1594 (2007).

    CAS  PubMed  Google Scholar 

  20. Fay, A. & Dworkin, J. Bacillus subtilis homologs of MviN (MurJ), the putative Escherichia coli lipid II flippase, are not essential for growth. J. Bacteriol. 191, 6020–6028 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. McKenney, P. T. & Eichenberger, P. Dynamics of spore coat morphogenesis in Bacillus subtilis. Mol. Microbiol. 83, 245–260 (2012). This study ties the phenomenon of spore encasement to the regulation of expression of individual spore coat genes.

    CAS  PubMed  Google Scholar 

  22. Aronson, A. I. & Fitz-James, P. Structure and morphogenesis of the bacterial spore coat. Bacteriol. Rev. 40, 360–402 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Warth, A. D., Ohye, D. F. & Murrell, W. G. The composition and structure of bacterial spores. J. Cell Biol. 16, 579–592 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tocheva, E. I. et al. Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell 146, 799–812 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. McKenney, P. T. et al. A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr. Biol. 20, 934–938 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Boydston, J. A., Yue, L., Kearney, J. F. & Turnbough, C. L. Jr. The ExsY protein is required for complete formation of the exosporium of Bacillus anthracis. J. Bacteriol. 188, 7440–7448 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Giorno, R. et al. Morphogenesis of the Bacillus anthracis spore. J. Bacteriol. 189, 691–705 (2007).

    CAS  PubMed  Google Scholar 

  28. Bozue, J. et al. Bacillus anthracis spores of the bclA mutant exhibit increased adherence to epithelial cells, fibroblasts, and endothelial cells but not to macrophages. Infect. Immun. 75, 4498–4505 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, G., Driks, A., Tawfiq, K., Mallozzi, M. & Patil, S. Bacillus anthracis and Bacillus subtilis spore surface properties and transport. Colloids Surf. B Biointerfaces 76, 512–518 (2010).

    CAS  PubMed  Google Scholar 

  30. Kailas, L. et al. Surface architecture of endospores of the Bacillus cereus/anthracis/thuringiensis family at the subnanometer scale. Proc. Natl Acad. Sci. USA 108, 16014–16019 (2011). This study provides a high-resolution characterization of the exosporium structure, revealing a crystalline layer made of a honeycomb-like array of cups.

    CAS  PubMed  Google Scholar 

  31. Permpoonpattana, P. et al. Surface layers of Clostridium difficile endospores. J. Bacteriol. 193, 6461–6470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Setlow, P. I will survive: DNA protection in bacterial spores. Trends Microbiol. 15, 172–180 (2007).

    CAS  PubMed  Google Scholar 

  33. Hullo, M. F., Moszer, I., Danchin, A. & Martin-Verstraete, I. CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183, 5426–5430 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, G. Y. & Nizet, V. Color me bad: microbial pigments as virulence factors. Trends Microbiol. 17, 406–413 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Eisenman, H. C. & Casadevall, A. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 93, 931–940 (2012).

    CAS  PubMed  Google Scholar 

  36. Klobutcher, L. A., Ragkousi, K. & Setlow, P. The Bacillus subtilis spore coat provides “eat resistance” during phagocytic predation by the protozoan Tetrahymena thermophila. Proc. Natl Acad. Sci. USA 103, 165–170 (2006).

    CAS  PubMed  Google Scholar 

  37. Laaberki, M. H. & Dworkin, J. Role of spore coat proteins in the resistance of Bacillus subtilis spores to Caenorhabditis elegans predation. J. Bacteriol. 190, 6197–6203 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Carroll, A. M., Plomp, M., Malkin, A. J. & Setlow, P. Protozoal digestion of coat-defective Bacillus subtilis spores produces “rinds” composed of insoluble coat protein. Appl. Environ. Microbiol. 74, 5875–5881 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Paredes-Sabja, D., Setlow, P. & Sarker, M. R. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol. 19, 85–94 (2011).

    CAS  PubMed  Google Scholar 

  40. Shah, I. M., Laaberki, M. H., Popham, D. L. & Dworkin, J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135, 486–496 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Driks, A. Bacillus subtilis spore coat. Microbiol. Mol. Biol. Rev. 63, 1–20 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stewart, B. T. & Halvorson, H. O. Studies on the spores of aerobic bacteria. I. The occurrence of alanine racemase. J. Bacteriol. 65, 160–166 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Steichen, C., Chen, P., Kearney, J. F. & Turnbough, C. L. Jr. Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J. Bacteriol. 185, 1903–1910 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Todd, S. J., Moir, A. J., Johnson, M. J. & Moir, A. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium. J. Bacteriol. 185, 3373–3378 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chesnokova, O. N., McPherson, S. A., Steichen, C. T. & Turnbough, C. L. Jr. The spore-specific alanine racemase of Bacillus anthracis and its role in suppressing germination during spore development. J. Bacteriol. 191, 1303–1310 (2009).

    CAS  PubMed  Google Scholar 

  46. Pierce, K. J., Salifu, S. P. & Tangney, M. Gene cloning and characterization of a second alanine racemase from Bacillus subtilis encoded by yncD. FEMS Microbiol. Lett. 283, 69–74 (2008).

    CAS  PubMed  Google Scholar 

  47. Butzin, X. Y. et al. Analysis of the effects of a gerP mutation on the germination of spores of Bacillus subtilis. J. Bacteriol. 194, 5749–5758 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chirakkal, H., O'Rourke, M., Atrih, A., Foster, S. J. & Moir, A. Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology 148, 2383–2392 (2002).

    CAS  PubMed  Google Scholar 

  49. Bagyan, I. & Setlow, P. Localization of the cortex lytic enzyme CwlJ in spores of Bacillus subtilis. J. Bacteriol. 184, 1219–1224 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lambert, E. A. & Popham, D. L. The Bacillus anthracis SleL (YaaH) protein is an N-acetylglucosaminidase involved in spore cortex depolymerization. J. Bacteriol. 190, 7601–7607 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Imamura, D., Kuwana, R., Takamatsu, H. & Watabe, K. Localization of proteins to different layers and regions of Bacillus subtilis spore coats. J. Bacteriol. 192, 518–524 (2010).

    CAS  PubMed  Google Scholar 

  52. Buist, G., Steen, A., Kok, J. & Kuipers, O. P. LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol. Microbiol. 68, 838–847 (2008).

    CAS  PubMed  Google Scholar 

  53. Ebmeier, S. E., Tan, I. S., Clapham, K. R. & Ramamurthi, K. S. Small proteins link coat and cortex assembly during sporulation in Bacillus subtilis. Mol. Microbiol. 84, 682–696 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Santo, L. Y. & Doi, R. H. Ultrastructural analysis during germination and outgrowth of Bacillus subtilis spores. J. Bacteriol. 120, 475–481 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Steichen, C. T., Kearney, J. F. & Turnbough, C. L. Jr. Non-uniform assembly of the Bacillus anthracis exosporium and a bottle cap model for spore germination and outgrowth. Mol. Microbiol. 64, 359–367 (2007). A description of the polarity of the spore envelope and a model for spore germination and outgrowth.

    CAS  PubMed  Google Scholar 

  56. Holt, S. C. & Leadbetter, E. R. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bacteriol. Rev. 33, 346–378 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Traag, B. A. et al. Do mycobacteria produce endospores? Proc. Natl Acad. Sci. USA 107, 878–881 (2010).

    CAS  PubMed  Google Scholar 

  58. Walker, J. R. et al. Clostridium taeniosporum spore ribbon-like appendage structure, composition and genes. Mol. Microbiol. 63, 629–643 (2007).

    CAS  PubMed  Google Scholar 

  59. Lequette, Y. et al. Role played by exosporium glycoproteins in the surface properties of Bacillus cereus spores and in their adhesion to stainless steel. Appl. Environ. Microbiol. 77, 4905–4911 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Buhr, T. L., Young, A. A., Minter, Z. A., Wells, C. M. & Shegogue, D. A. Decontamination of a hard surface contaminated with Bacillus anthracisΔSterne and B. anthracis Ames spores using electrochemically generated liquid-phase chlorine dioxide (eClO2). J. Appl. Microbiol. 111, 1057–1064 (2011).

    CAS  PubMed  Google Scholar 

  61. Siala, A., Hill, I. R. & Gray, T. R. G. Populations of spore-forming bacteria in an acid forest soil, with special reference to Bacillus subtilis. J. Gen. Microbiol. 8, 183–190 (1974).

    Google Scholar 

  62. Nicholson, W. L. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59, 410–416 (2002).

    CAS  PubMed  Google Scholar 

  63. Donovan, W., Zheng, L. B., Sandman, K. & Losick, R. Genes encoding spore coat polypeptides from Bacillus subtilis. J. Mol. Biol. 196, 1–10 (1987).

    CAS  PubMed  Google Scholar 

  64. Beall, B., Driks, A., Losick, R. & Moran, C. P. Jr. Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat. J. Bacteriol. 175, 1705–1716 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zheng, L. B., Donovan, W. P., Fitz-James, P. C. & Losick, R. Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore. Genes Dev. 2, 1047–1054 (1988).

    CAS  PubMed  Google Scholar 

  66. Lai, E. M. et al. Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. J. Bacteriol. 185, 1443–1454 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kuwana, R. et al. Proteomics characterization of novel spore proteins of Bacillus subtilis. Microbiology 148, 3971–3982 (2002).

    CAS  PubMed  Google Scholar 

  68. Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2, e328 (2004).

    PubMed  PubMed Central  Google Scholar 

  69. Kim, H. et al. The Bacillus subtilis spore coat protein interaction network. Mol. Microbiol. 59, 487–502 (2006).

    CAS  PubMed  Google Scholar 

  70. Abhyankar, W. et al. Gel-free proteomic identification of the Bacillus subtilis insoluble spore coat protein fraction. Proteomics 11, 4541–4550 (2011).

    CAS  PubMed  Google Scholar 

  71. Webb, C. D., Decatur, A., Teleman, A. & Losick, R. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. J. Bacteriol. 177, 5906–5911 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Eichenberger, P. et al. The σE regulon and the identification of additional sporulation genes in Bacillus subtilis. J. Mol. Biol. 327, 945–972 (2003).

    CAS  PubMed  Google Scholar 

  73. Piggot, P. J. & Coote, J. G. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40, 908–962 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Levin, P. A. et al. An unusually small gene required for sporulation by Bacillus subtilis. Mol. Microbiol. 9, 761–771 (1993).

    CAS  PubMed  Google Scholar 

  75. Roels, S., Driks, A. & Losick, R. Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. J. Bacteriol. 174, 575–585 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Takamatsu, H., Kodama, T., Nakayama, T. & Watabe, K. Characterization of the yrbA gene of Bacillus subtilis, involved in resistance and germination of spores. J. Bacteriol. 181, 4986–4994 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ozin, A. J., Henriques, A. O., Yi, H. & Moran, C. P. Jr. Morphogenetic proteins SpoVID and SafA form a complex during assembly of the Bacillus subtilis spore coat. J. Bacteriol. 182, 1828–1833 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Driks, A., Roels, S., Beall, B., Moran, C. P. Jr & Losick, R. Subcellular localization of proteins involved in the assembly of the spore coat of Bacillus subtilis. Genes Dev. 8, 234–244 (1994). This article proposes a seminal model for coat assembly.

    CAS  PubMed  Google Scholar 

  79. Imamura, D., Kuwana, R., Takamatsu, H. & Watabe, K. Proteins involved in formation of the outermost layer of Bacillus subtilis spores. J. Bacteriol. 193, 4075–4080 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Redmond, C., Baillie, L. W., Hibbs, S., Moir, A. J. & Moir, A. Identification of proteins in the exosporium of Bacillus anthracis. Microbiology 150, 355–363 (2004).

    CAS  PubMed  Google Scholar 

  81. Waller, L. N., Fox, N., Fox, K. F., Fox, A. & Price, R. L. Ruthenium red staining for ultrastructural visualization of a glycoprotein layer surrounding the spore of Bacillus anthracis and Bacillus subtilis. J. Microbiol. Methods 58, 23–30 (2004). This study introduces the use of ruthenium red staining to analyse the outermost layer of the spore.

    CAS  PubMed  Google Scholar 

  82. Cutting, S. et al. SpoVM, a small protein essential to development in Bacillus subtilis, interacts with the ATP-dependent protease FtsH. J. Bacteriol. 179, 5534–5542 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, K. H. et al. The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis. Mol. Microbiol. 74, 634–649 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ozin, A. J., Samford, C. S., Henriques, A. O. & Moran, C. P. Jr. SpoVID guides SafA to the spore coat in Bacillus subtilis. J. Bacteriol. 183, 3041–3049 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Costa, T., Isidro, A. L., Moran, C. P. Jr & Henriques, A. O. Interaction between coat morphogenetic proteins SafA and SpoVID. J. Bacteriol. 188, 7731–7741 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Price, K. D. & Losick, R. A four-dimensional view of assembly of a morphogenetic protein during sporulation in Bacillus subtilis. J. Bacteriol. 181, 781–790 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ramamurthi, K. S., Clapham, K. R. & Losick, R. Peptide anchoring spore coat assembly to the outer forespore membrane in Bacillus subtilis. Mol. Microbiol. 62, 1547–1557 (2006).

    CAS  PubMed  Google Scholar 

  88. van Ooij, C., Eichenberger, P. & Losick, R. Dynamic patterns of subcellular protein localization during spore coat morphogenesis in Bacillus subtilis. J. Bacteriol. 186, 4441–4448 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Pogliano, K., Harry, E. & Losick, R. Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy. Mol. Microbiol. 18, 459–470 (1995).

    CAS  PubMed  Google Scholar 

  90. van Ooij, C. & Losick, R. Subcellular localization of a small sporulation protein in Bacillus subtilis. J. Bacteriol. 185, 1391–1398 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Mullerova, D., Krajcikova, D. & Barak, I. Interactions between Bacillus subtilis early spore coat morphogenetic proteins. FEMS Microbiol. Lett. 299, 74–85 (2009).

    CAS  PubMed  Google Scholar 

  92. de Francesco, M. et al. Physical interaction between coat morphogenetic proteins SpoVID and CotE is necessary for spore encasement in Bacillus subtilis. J. Bacteriol. 194, 4941–4950 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ramamurthi, K. S. & Losick, R. ATP-driven self-assembly of a morphogenetic protein in Bacillus subtilis. Mol. Cell 31, 406–414 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Little, S. & Driks, A. Functional analysis of the Bacillus subtilis morphogenetic spore coat protein CotE. Mol. Microbiol. 42, 1107–1120 (2001).

    CAS  PubMed  Google Scholar 

  95. Krajcikova, D., Lukacova, M., Mullerova, D., Cutting, S. M. & Barak, I. Searching for protein-protein interactions within the Bacillus subtilis spore coat. J. Bacteriol. 191, 3212–3219 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kroos, L., Kunkel, B. & Losick, R. Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor. Science 243, 526–529 (1989).

    CAS  PubMed  Google Scholar 

  97. Zhang, J., Fitz-James, P. C. & Aronson, A. I. Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J. Bacteriol. 175, 3757–3766 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, J., Ichikawa, H., Halberg, R., Kroos, L. & Aronson, A. I. Regulation of the transcription of a cluster of Bacillus subtilis spore coat genes. J. Mol. Biol. 240, 405–415 (1994).

    CAS  PubMed  Google Scholar 

  99. Zheng, L. B. & Losick, R. Cascade regulation of spore coat gene expression in Bacillus subtilis. J. Mol. Biol. 212, 645–660 (1990).

    CAS  PubMed  Google Scholar 

  100. Ragkousi, K. & Setlow, P. Transglutaminase-mediated cross-linking of GerQ in the coats of Bacillus subtilis spores. J. Bacteriol. 186, 5567–5575 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Naclerio, G., Baccigalupi, L., Zilhao, R., De Felice, M. & Ricca, E. Bacillus subtilis spore coat assembly requires cotH gene expression. J. Bacteriol. 178, 4375–4380 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. McPherson, D. C. et al. Characterization of the Bacillus subtilis spore morphogenetic coat protein CotO. J. Bacteriol. 187, 8278–8290 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Giglio, R. et al. Organization and evolution of the cotG and cotH genes of Bacillus subtilis. J. Bacteriol. 193, 6664–6673 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Isticato, R. et al. CotC-CotU heterodimerization during assembly of the Bacillus subtilis spore coat. J. Bacteriol. 190, 1267–1275 (2008).

    CAS  PubMed  Google Scholar 

  105. Erhardt, M., Namba, K. & Hughes, K. T. Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb. Perspect. Biol. 2, a000299 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ohye, D. F. & Murrell, W. G. Exosporium and spore coat formation in Bacillus cereus T. J. Bacteriol. 115, 1179–1190 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Thompson, B. M. & Stewart, G. C. Targeting of the BclA and BclB proteins to the Bacillus anthracis spore surface. Mol. Microbiol. 70, 421–434 (2008).

    CAS  PubMed  Google Scholar 

  108. Angert, E. R. Alternatives to binary fission in bacteria. Nature Rev. Microbiol. 3, 214–224 (2005).

    CAS  Google Scholar 

  109. Eldar, A. et al. Partial penetrance facilitates developmental evolution in bacteria. Nature 460, 510–514 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Flardh, K. & Buttner, M. J. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nature Rev. Microbiol. 7, 36–49 (2009).

    Google Scholar 

  111. Sudo, S. Z. & Dworkin, M. Comparative biology of prokaryotic resting cells. Adv. Microb. Physiol. 9, 153–224 (1973).

    CAS  PubMed  Google Scholar 

  112. Muller, F. D., Schink, C. W., Hoiczyk, E., Cserti, E. & Higgs, P. I. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Mol. Microbiol. 83, 486–505 (2012).

    PubMed  Google Scholar 

  113. Wu, C. H., Mulchandani, A. & Chen, W. Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol. 16, 181–188 (2008).

    CAS  PubMed  Google Scholar 

  114. Cutting, S. M., Hong, H. A., Baccigalupi, L. & Ricca, E. Oral vaccine delivery by recombinant spore probiotics. Int. Rev. Immunol. 28, 487–505 (2009).

    CAS  PubMed  Google Scholar 

  115. Permpoonpattana, P. et al. Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B. Infect. Immun. 79, 2295–2302 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Amuguni, H. et al. Sublingual immunization with an engineered Bacillus subtilis strain expressing tetanus toxin fragment C induces systemic and mucosal immune responses in piglets. Microbes Infect. 14, 447–456 (2012).

    CAS  PubMed  Google Scholar 

  117. Sirec, T. et al. Adsorption of beta-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis. Microb. Cell Fact. 11, 100 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ramamurthi, K. S., Lecuyer, S., Stone, H. A. & Losick, R. Geometric cue for protein localization in a bacterium. Science 323, 1354–1357 (2009). This study reveals that the coat morphogenetic protein SpoVM has the ability to recognize positive membrane curvature.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Huang, K. C. & Ramamurthi, K. S. Macromolecules that prefer their membranes curvy. Mol. Microbiol. 76, 822–832 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Pucadyil, T. J. & Schmid, S. L. Conserved functions of membrane active GTPases in coated vesicle formation. Science 325, 1217–1220 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bhatia, V. K., Hatzakis, N. S. & Stamou, D. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin. Cell Dev. Biol. 21, 381–390 (2010).

    CAS  PubMed  Google Scholar 

  122. Masayama, A. et al. A novel lipolytic enzyme, YcsK (LipC), located in the spore coat of Bacillus subtilis, is involved in spore germination. J. Bacteriol. 189, 2369–2375 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Bourne, N., FitzJames, P. C. & Aronson, A. I. Structural and germination defects of Bacillus subtilis spores with altered contents of a spore coat protein. J. Bacteriol. 173, 6618–6625 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Costa, T., Steil, L., Martins, L. O., Volker, U. & Henriques, A. O. Assembly of an oxalate decarboxylase produced under σK control into the Bacillus subtilis spore coat. J. Bacteriol. 186, 1462–1474 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Henriques, A. O., Beall, B. W. & Moran, C. P. Jr. CotM of Bacillus subtilis, a member of the α-crystallin family of stress proteins, is induced during development and participates in spore outer coat formation. J. Bacteriol. 179, 1887–1897 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Takamatsu, H. et al. A spore coat protein, CotS, of Bacillus subtilis is synthesized under the regulation of σK and GerE during development and is located in the inner coat layer of spores. J. Bacteriol. 180, 2968–2974 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Scheeff, E. D. et al. Genomics, evolution, and crystal structure of a new family of bacterial spore kinases. Proteins 78, 1470–1482 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work could not be cited in full owing to space limitations. Work in P.E.'s laboratory is supported by grant GM081571 from the US National Institutes of Health (NIH). Work in A.D.'s laboratory is supported by NIH grants R21AI097934 and R01AI093493, and HDTRA1-11-1-0051 from the US Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Eichenberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Patrick Eichenberger's homepage

Glossary

Sporulation

The developmental process of spore formation.

Endospores

Metabolically dormant cells composed of a partially dehydrated central core (containing the genome) surrounded by several concentrically arranged protective layers. An endospore develops inside a mother cell.

Mother cell

The larger of the two compartments formed by asymmetric division of the sporulating cell, it synthesizes most of the building blocks required to assemble the endospore protective structures and lyses at the end of sporulation, releasing the spore into the environment.

Forespore

The smaller of the two compartments that are formed by asymmetric division of the sporulating cell. It matures into an endospore.

Coat

A spore protective structure, which is made up of dozens of proteins. It is usually multilayered, consisting of inner and outer layers.

Sporangium

A vessel in which spores are formed. In endospore formation it refers to a cell that has entered sporulation by dividing asymmetrically.

Engulfment

The morphological transition in sporulation during which the mother cell swallows the forespore in a phagocytosis-like process involving membrane migration. After engulfment is complete, the forespore becomes a cell within the mother cell cytoplasm.

Cortex

A spore protective structure composed of peptidoglycan. It is assembled between the inner and outer forespore membranes.

Crust

The outermost layer of the coat in Bacillus subtilis. It closely follows the contours of the outer coat.

Exosporium

The outermost structure of the spore in several species. It is a protein (and, in at least some cases, a glycoprotein) layer separated from the outer coat by a large gap of irregular width referred to as the interspace.

Bacteriovores

Free-living heterotrophs that feed on bacteria.

Lamellae

The characteristic alternating dark and light rings of the inner coat that are visible by electron microscopy.

Encasement

The morphological transition in spore coat assembly from a cap of coat proteins on the mother cell proximal pole of the forespore to a symmetric distribution around the circumference of the spore.

Injectisomes

In Gram-negative bacteria, a family of secretion systems that have a molecular architecture homologous to flagella.

Natto

A Japanese dish of cooked soy beans fermented by a strain of Bacillus subtilis. It has a pungent aroma and a unique texture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKenney, P., Driks, A. & Eichenberger, P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11, 33–44 (2013). https://doi.org/10.1038/nrmicro2921

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro2921

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology